- 1. Course number and name: MEEN 3240 Mechanical & Energy Engineering Lab I
- 2. Credits and contact hours: 2 credits
- 3. Instructor's or course coordinator's name: Dr. Xiaohua Li
- 4. Text book, title, author, and year: Lab Manual provided and edited by department

Experimental Methods for Engineers, 8th ed (or 7th ed) J. P. Holman (ISBN: 978-0-07-

<u>352930-1)</u>

- 5. Specific course information
 - a. brief description of the content of the course (catalog description): Mechanical and

Energy Engineering Laboratory I. 2 hours (1;3). Principles of experimentation.

Measurement techniques and instruments. Statistical analysis of experimental data and

error analysis. Presentation of data and report writing. Students will perform a series

of experiments in areas of mechanical engineering and will undertake a project where

they will design an experiment to obtain data.

b. prerequisites or co-requisites: Prerequisite(s): MATH 3410; MEEN 2210; MEEN

2110, all with a grade of C or better.

c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the

program: Required

6. Specific goals for the course:

MEEN 2240	ABET EAC Student Outcomes						
Course Learning Outcomes	1	2	3	4	5	6	7
Demonstrate ability to perform statistical error analysis of experimental data.	Х					Х	
Demonstrate understanding measurements of transport properties.	Х					Х	
Demonstrate understanding temperature measurements.	Х					Х	
Demonstrate ability to design and construct mechanical engineering experiments.	Х				Х	Х	
Demonstrate understanding of the First Law of Thermodynamics.	Х					Х	

Demonstrate understanding of the fundamentals of wind and solar energy and power estimation.	Х			Х	
Demonstrate ability to compile, present and report scientific data.	Х	Х	Х	Х	
Demonstrate ability to control thermal science experiments.	Х			Х	

7. Brief list of topics to be covered:

Topics to Be Covered				
Uncertainty & Propagation	Lab & Journal Reporting			
Lab Design & Control	Solar Power Estimation			
Viscosity	Wind Power Estimation			
Temperature Sensors	Calorimetry			